Rapid Communication Rapid Release of Active Tissue Factor From Human Arterial Smooth Muscle Cells Under Flow Conditions
نویسندگان
چکیده
Circulating tissue factor (TF) is an important determinant of coronary thrombosis. Among other cell types, such as monocytes, vascular smooth muscle cells (SMCs) are capable of releasing TF. When studied under static conditions, SMCs do release TF, but this process is slow and, thus, cannot explain the elevated levels of circulating TF, as observed in patients with acute coronary syndromes. The present study demonstrates that cultured human mammary artery SMCs very rapidly (minutes) release active, microparticle-bound TF when exposed to flow conditions. There was a clear log-linear correlation between the shear rate (range 10 s 1 to 1500 s ) and the procoagulant activity of SMC perfusates. Flow-dependent release of TF was transient (10 minutes) and did not measurably reduce cell surface TF content. Interestingly, a time-dependent (t1/2 30 minutes) re-exposure of releasable TF was detected after a no-flow period. These data demonstrate that SMCs may become a pathophysiologically relevant source of TF that can be rapidly released into the circulation in situations in which endothelial damage occurs and SMCs come into a close contact with the flowing blood. (Arterioscler Thromb Vasc Biol. 2006;26:e34–e37.)
منابع مشابه
Rapid release of active tissue factor from human arterial smooth muscle cells under flow conditions.
Circulating tissue factor (TF) is an important determinant of coronary thrombosis. Among other cell types, such as monocytes, vascular smooth muscle cells (SMCs) are capable of releasing TF. When studied under static conditions, SMCs do release TF, but this process is slow and, thus, cannot explain the elevated levels of circulating TF, as observed in patients with acute coronary syndromes. The...
متن کاملCyclooxygenase-2 regulates granulocyte-macrophage colony-stimulating factor, but not interleukin-8, production by human vascular cells: role of cAMP.
Vascular smooth muscle is now recognized as an important site of mediator generation under inflammatory conditions. Indeed, the release of leukocyte activators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-8, by human arterial smooth muscle cells has recently been demonstrated. However, the potential for venous cells to release GM-CSF has not been addre...
متن کاملAirway epithelial-derived factor relaxes pulmonary vascular smooth muscle.
The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this inve...
متن کاملRelease of active tissue factor by human arterial smooth muscle cells.
Tissue factor (TF), the initiator of coagulation, is thought to function predominantly at the cell surface. Recent data have suggested that active TF is present extracellularly in atherosclerotic plaques, the arterial wall, and the blood. This study was conducted to determine whether smooth muscle cells (SMCs), a major source of arterial TF, could generate extracellular TF. Active TF accumulate...
متن کاملAstrocyte regulation of blood flow in the brain.
Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca(2+) increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2...
متن کامل